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Persistence probabilities of the interface height ins1+1d- and s2+1d-dimensional atomistic, solid-on-solid,
stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on
models that belong to the molecular beam epitaxy(MBE) universality class. Both the initial transient and the
long-time steady-state regimes are investigated. We show that for growth models in the MBE universality
class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the
measured values of the positive and negative persistence exponents in both transient and steady-state regimes.
For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to
be u+

S=0.66±0.02 andu−
S=0.78±0.02, respectively, ins1+1d dimensions, andu+

S=0.76±0.02 andu−
S

=0.85±0.02, respectively, ins2+1d dimensions. The noise reduction technique is applied on some of thes1
+1d-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically
that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier
to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents
in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction.
We also find that the steady-state persistence exponents can be obtained from simulations over times that are
much shorter than that required for the interface to reach the steady state. The dependence of the persistence
probability on the system size and the sampling time is shown to be described by a simple scaling form.
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I. INTRODUCTION

Nonequilibrium surface growth and interface dynamics
represent an area of research that has received much atten-
tion in the last two decades[1]. A large number of discrete
atomistic growth models[2–8] and stochastic growth equa-
tions [9–14] have been found[15] to exhibit generic scale
invariance characterized by power-law behavior of several
quantities of interest, such as the interface width as a func-
tion of time (measured in units of deposited layers) and
space- and time-dependent correlation functions of the inter-
face height. Much effort has been devoted to the classifica-
tion of growth models and equations into different universal-
ity classes characterized by the values of the exponents that
describe the dynamic scaling behavior implied by these
power laws. A variety of experimental studies[15,16] have
confirmed the occurrence of dynamic scaling in nonequilib-
rium epitaxial growth. Among the various experimental
methods of surface growth, molecular beam epitaxy(MBE)
is especially important because it plays a crucial role in the
fabrication of smooth semiconductor films required in tech-
nological applications. Under usual MBE growth conditions,
desorption from the film surface is negligible and the forma-
tion of bulk vacancies and overhangs is strongly suppressed.
It is generally believed that nonequilibrium surface growth
under these conditions is well described by aconservednon-
linear Langevin-type equation[12–14] and related atomistic

models[3,5,8,14] that form the so-called “MBE universality
class.”

Surface growth is an example of a general class of prob-
lems involving the dynamics of non-Markovian, spatially ex-
tended, stochastic systems. In recent years, the concept of
persistence[17] has proven to be very useful in analyzing
the dynamical behavior of such systems[18–24]. Loosely
speaking, a stochastic variable ispersistentif it has a ten-
dency to maintain its initial characteristics over a long period
of time. Thepersistence probability Pstd is typically defined
as the probability that a characteristic feature(e.g., the sign)
of a stochastic variable does not change at all over a certain
period of timet. Although the mathematical concept of per-
sistence was introduced a long time ago in the context of the
“zero-crossing problem” in Gaussian stationary processes
[25], it is only very recently that this concept has received
attention in describing the statistics of first passage events in
a variety of spatially extended nonequilibrium systems. Ex-
amples of such applications of the concept of persistence
range from the fundamental classical diffusion equation[18]
to the zero temperature Glauber dynamics of the ferromag-
netic Ising andq-state Potts models[19–21,26] and phase
ordering kinetics[22]. Recently, a generalization of the per-
sistence concept(probability of persistent large deviations)
has been introduced[26]. A closely related idea, that of sign-
time distribution, was developed in Ref.[27]. An increasing
number of experimental results are also available for persis-
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tence in systems such as coalescence of droplets[28], coars-
ening of two-dimensional soap froth[29], twisted nematic
liquid crystal [30], and nuclear spin distribution in laser po-
larized Xe129 gas[31].

Recent work of Krug and collaborators[23,24] has ex-
tended the persistence concept to the first-passage statistics
of fluctuating interfaces. Persistence in the dynamics of fluc-
tuating interfaces is of crucial importance in ultrasmall scale
solid-state devices. As the technology advances into the na-
nometric regime, questions such as how long a particular
perturbation that appears in an evolving interface persists in
time and what is the average time required for a structure to
first fluctuate into an unstable configuration become impor-
tant. The persistence probability can provide quantitative
predictions on such questions. Recent experiments[32–34]
have demonstrated the usefulness of the concept of persis-
tence in the characterization of the equilibrium fluctuations
of steps on a vicinal surface. Analysis of experimental data
on step fluctuations on Al/Sis111d [32,34] and Ags111d
[33,34] surfaces has shown that the long-time behavior of the
persistence probability and the probability of persistent large
deviations in these systems agrees quantitatively with the
corresponding theoretical predictions. These results show
that the persistence probability and related quantities are par-
ticularly relevant for describing and understanding the long-
time dynamics of interface fluctuations.

In the context of surface growth and fluctuations, the per-
sistence probabilityPst0,t0+ td may be defined as the prob-
ability that starting from an initial timet0, the interfacial
heighthsr ,t8d at spatial positionr does not return to its origi-
nal value at any point in the time interval betweent0 and
t0+ t. This probability is clearly the sum of the probabilities
of the heighthsr ,t8d always remaining above(the positive
persistence probabilityP+) and always remaining below(the
negativepersistence probabilityP−) its specific initial value
hsr ,t0d for all t0, t8ø t0+ t. This concept quantifies the ten-
dency of a stochastic field(in our case the interface height)
to persistently conserve a specific feature(the sign of the
interfacial height fluctuations). The persistence probability
Pst0,t0+ td would, in general, depend on botht0 andt. In the
early stage of the growth process starting from a flat interface
(transient regime), the interface gradually develops dynami-
cal roughness[1] due to the effect of fluctuations in the beam
intensity. In this regime, the choice of the initial timet0 is
clearly important: it determines the degree of roughness of
the configuration from which the interface evolves. At long
times, the growing interface enters into a new evolution
stage, called the steady-state regime, characterized by fully
developed roughness that does not increase further in time.
In this regime, the choice oft0 is expected to be unimportant.

The work of Krug et al. [23] shows that for a class of
linear Langevin-type equations for surface growth and ato-
mistic models belonging in the same dynamical universality
class as these equations, the persistence probability decays as
a power law in time for long times in both transient and
steady-state regimes. These power laws define the positive
and negative persistence exponents,u±

T and u±
S, for positive

and negative persistence in the transient and steady-state re-
gimes, respectively. Theh→−h symmetry of the linear

growth equations implies thatu+
T=u−

T and u+
S=u−

S in these
systems. In Ref.[23], it was pointed out that the persistence
exponent in the steady state of these linear models is related
to the dynamic scaling exponentb, which describes the
growth of the interface widthW as a function of timet in the
transient regimesW~ tbd, through the relationu+

S=u−
S=1−b.

The validity of this relation was confirmed by numerical
simulations. Since the exponentb is the same for all models
in the same dynamical universality class, this result implies
that the persistence exponent in the steady-state regime of
theselinear models is also universal. Numerical results for
the persistence exponent in the transient regime, for which
no analytic predictions are available, also indicate a similar
universality. Kallabis and Krug[24] carried out a similar
calculation for s1+1d-dimensional Kardar-Parisi-Zhang
(KPZ) [11] interfaces. They found that the nonlinearity in the
KPZ equation that breaks theh→−h symmetry is reflected
in different values of the positive and negative persistence
exponents,u+

T andu−
T, in the transient regime. The values of

the steady-state persistence exponentsu+
S andu−

S were found
to be equal to each other, and equal to 1−b within the accu-
racy of the numerical results. This is expected because the
h→−h symmetry is dynamically restored in the steady state
of the s1+1d-dimensional KPZ equation. This is, however, a
specific feature of thes1+1d-dimensional KPZ model, which
for nongeneric reasons, turns out to be up-down symmetric
in the steady state. Nonlinear surface growth models(e.g.,
the higher dimensional KPZ model, the nonlinear MBE
growth model) are generically expected to have different val-
ues ofu± in both transient and steady-state regimes.

In this paper, we present the results of a detailed numeri-
cal study of the persistence behavior of several atomistic,
solid-on-solid(SOS) models of surface growth ins1+1d and
s2+1d dimensions. While we concentrate on models in the
MBE universality class, results for a few other models, some
of which have been studied in Refs.[23,24] are also pre-
sented for completeness. The highly nontrivial nature of the
persistence probability, in spite of a deceptive simplicity of
the defining concept, arises from the complex temporal non-
locality (“memory”) inherent in its definition. In fact, there
are very few stochastic problems where an analytical solu-
tion for the persistence probability has been achieved. These
include the classical Brownian motion[35], the random ac-
celeration problem[36], and the one-dimensional Ising and
q-state Potts models[20]. In general, the highly nonlocal
nature of the temporal correlations in a non-Markovian sto-
chastic process makes it extremely difficult to obtain exact
results for the persistence probability even for seemingly
simple stochastic processes. Even for the simple diffusion
equation, the persistence exponent is known only numeri-
cally, or within an independent interval approximation[18]
or series expansion approach[37]. However, it is fairly
straightforward in most cases to directly simulate the persis-
tence probability to obtain its stationary power-law behavior
at large times, and thus to numerically obtain the approxi-
mate value of the persistence exponent. For this reason, we
use stochastic(Monte Carlo) simulations of the atomistic
growth models to study their temporal persistence behavior
in the transient and steady-state regimes. These models are
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defined in terms of random deposition and specific cellular-
automaton-type local diffusion or relaxation rules. Some of
these models are of the “limited-mobility” type in the sense
that the surface diffusion rules or local restrictions limit the
characteristic length over which a deposited particle can dif-
fuse to just one or a few lattice spacings. The models in the
MBE universality class considered in our study are: the Das
Sarma-Tamborenea model[3], the Wolf-Villain model
[4,38], the Kim-Das Sarma model[5] and its “controlled”
version[14], and the restricted solid-on-solid(RSOS) model
of Kim at al. [8]. We also present results for the Family
model[2] that is known to belong to the Edwards-Wilkinson
[10] universality class and the restricted solid-on-solid
(RSOS) model of Kim and Kosterlitz[7] that is in the KPZ
universality class.

The main objective of our study is to examine the effects
of the nonlinearity in the MBE growth equation[12,13] on
the persistence behavior. Unlike thes1+1d-dimensional KPZ
equation, the nonlinearity in the MBE growth equation per-
sists in the steady state in the sense that the height profile
exhibits a clear asymmetry between the positive and negative
directions(above and below the average height). Therefore,
the positive and negative persistence exponentsu+

S andu−
S are

expected to have different values in these models. If this is
the case, then the relation between the steady-state persis-
tence exponent and the dynamic scaling exponentb found in
linear models cannot be valid for bothu+

S andu−
S, indicating

that at least one of these exponents is a new, nontrivial one
not related to the usual dynamic scaling exponents. The val-
ues ofu+

S andu−
S and their relation tob, as well as the values

of the transient persistence exponentsu+
T andu−

T are the pri-
mary questions addressed in our study. We also investigate
the universality of these exponents by measuring them for
several models that are known to belong in the same univer-
sality class as far as their dynamic scaling behavior is con-
cerned. To obtain accurate values of the exponents, the
“noise reduction” technique[39] is employed in some of the
simulations ofs1+1d-dimensional models. We also address
some questions related to the methodology of calculating
persistence exponents from simulations. Since the value of
the dynamical exponentz is relatively large for models in the
MBE universality class, the time required for reaching the
steady state grows quickly as the sample sizeL is increased
stsat~Lzd. As a result, it is difficult to reach the steady state in
simulations for largeL. It is, therefore, useful to find out
whether the value of the steady-state persistence exponents
can be extracted from calculations ofPst0,t0+ td with t0
! tsat~Lz. Another issue in this context involves the effects
of the finiteness of the sample sizeL and the sampling time
dt (the time interval between two successive measurements
of the height profile) on the calculated persistence probabil-
ity. An understanding of these effects is needed for extracting
reliable values of the persistence exponents from simulations
that alwaysinvolve finite values ofL anddt. Understanding
the effects ofL anddt on the persistence analysis is not only
important for our simulations, but is also important in the
experimental measurements of persistence which invariably
involve finite system size and sampling time.

The main results of our study are as follows. We find that
the positive and negative steady-state persistence exponents

for growth models in the MBE universality class are indeed
different from each other, reflecting the asymmetry of the
interface arising from the presence of nonlinearities in the
underlying growth equation. Our results for these exponent
values are:u+

S=0.66±0.02 andu−
S=0.78±0.02, respectively,

in s1+1d dimensions;u+
S=0.76±0.02 andu−

S=0.85±0.02 in
s2+1d dimensions. The values of the positive and negative
persistence exponents for different models are clearly corre-
lated with the asymmetry of the “above” and “below”(de-
fined relative to the mean interface height) portions of the
interface. We show analytically that thesmaller one of the
two steady-state persistence exponents should be equal to
s1−bd. Thus, the relationu=1−b derived in Ref.[23] for
linear surface growth models is expected to be satisfied byu+

S

for the nonlinear models considered here. Our numerical re-
sults are consistent with this expectation: we find that the
positive persistence exponent is indeed close tos1−bd, while
the negative one is significantly higher. Similar asymmetry is
found for the persistence exponents in the transient regime
with u+

T,u−
T in MBE growth. Within the uncertainties in the

numerically determined values of the exponents, they are
universal in the sense that different models in the same dy-
namic universality class yield very similar values for these
exponents. For the models in the Edwards-Wilkinson and
KPZ universality classes, we find results in agreement with
those of earlier studies[23,24].

Our simulations also reveal that a measurement of the
steady-state persistence exponents is possible from simula-
tions in which the initial timet0 is much smaller than the
time s,Lzd required for the interfacial roughness to saturate.
A similar result was reported in Ref.[23] where it was found
that the steady-state persistence exponent may be obtained
from a calculation ofPst0,t0+ td with t! t0!Lz. We find that
the restrictiont! t0 is not necessary for seeing a power-law
behavior ofP±st0,t0+ td—a power law with the steady-state
exponents is found even ift is close to or somewhat larger
than t0. We exploit this finding in some of our persistence
simulations fors2+1d-dimensional growth models which are
more relevant to experiments. These results, however, also
imply that it would be extremely difficult to measure the
transient persistence exponents from real surface growth ex-
periments. Finally, we show that the dependence of the
steady-state persistence probability on the sample sizeL and
the sampling timedt is described by a simple scaling func-
tion of the variablest /Lz anddt /Lz. This scaling description
is similar to that found recently[40] for a different “persis-
tence probability,” the survival probability, which measures
the probability of the height not returning to itsaverage
value (rather than the initial value) over a certain period of
time. Although the “persistence” and the “survival”[40]
probability seem to be qualitatively similar in their defini-
tions, the two are mathematically quite unrelated, and in fact,
no exponent can be defined for the survival probability. In
this paper we only discuss the persistence probability and the
persistence exponent for surface growth processes.

The rest of the paper is organized as follows: in Sec. II A,
we briefly discuss the main universality classes and their
corresponding dynamic equations and scaling exponents rel-
evant for surface growth phenomena. Section II B contains a
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short overview of the persistence probability concept from
the interface fluctuations perspective. The discrete stochastic
SOS growth models considered in our study are described in
Sec. III. In addition, we briefly describe in this section the
noise reduction technique which is employed in some of our
simulations. Section IV contains a detailed description of our
main results: in Sec. IV A, ours1+1d-dimensional simula-
tion results for the transient and steady-state persistence ex-
ponents are presented, focusing mostly on models described
by the nonlinear MBE dynamical equation. Section IV B
contains the analytic derivation of a relation between the
smaller steady-state persistence exponent and the dynamic
growth exponent. In Sec. IV C, we introduce an alternative
approach for measuring the steady-state persistence expo-
nents, using a relatively short “equilibration time” that is
much shorter than the time required for reaching the true
steady state. Section IV D contains the results of our
s2+1d-dimensional persistence calculation for a selection of
linear and nonlinear models. Simulation results that establish
a scaling form of the dependence of the persistence probabil-
ity on the sample size and the sampling time are presented in
Sec. IV E. The final Sec. V contains a summary of our main
results and a few concluding remarks.

II. STOCHASTIC GROWTH EQUATIONS AND
PERSISTENCE PROBABILITIES

A. Growth equations and dynamic scaling

The dynamic scaling behavior of stochastic growth equa-
tions may be classified into several universality classes. Each
universality class is characterized by a set of scaling expo-
nents[1] which depend on the dimensionality of the prob-
lem. These exponents aresa ,b ,zd, wherea is the roughness
exponent describing the dependence of the amplitude of
height fluctuations in the steady-state regimest@Lzd on the
sample sizeL, b is the growth exponent that describes the
initial power-law growth of the interface width in the tran-
sient regimes1! t!Lzd, and z is the dynamical exponent
related to the system size dependence of the time at which
the interface width reaches saturation. Note thatz=a /b for
all the models considered in this paper. To describe the in-
terface evolution we use the single-valued functionhsr ,td
which represents the height of the growing sample at posi-
tion r and deposition timet. The interfacial height fluctua-
tions are described by the root-mean-squared height devia-
tion (or interface width) which is a function of the substrate
sizeL and deposition timet:

WsL,td = kfhsr ,td − h̄stdg2l1/2, s1d

where h̄std is the average sample thickness. The width
WsL ,td scales asWsL ,td~ tb for t!Lz and WsL ,td~La for
t@Lz [41], Lz being the equilibration time of the interface,
when its stationary roughness is fully developed.

Since it is convenient to write the evolution equations in
terms of the deviation of the height from its spatial average

value,hsr ,td− h̄std, from now on we will denote byhsr ,td the
interface height fluctuation measured from the average

height. Extensive studies of dynamic scaling in kinetic sur-
face roughening(for an extended review see Ref.[15]) have
revealed the existence of(at least) four universality classes
that are described, in the long wavelength limit, by the fol-
lowing continuum equations and sets of scaling exponents
sa ,b ,zd, shown for the 1+1s2+1d-dimensional cases, re-
spectively:

(1) The Edwards-Wilkinson(EW) second-order linear
equation:1

2, 1
4, 2f0slogd ,0slogd ,2g

] hsr ,td
] t

= n2¹
2hsr ,td + hsr ,td, s2d

(2) The KPZ second-order nonlinear equation:1
2, 1

3, 3
2

s.0.4,.0.24,.1.67d

] hsr ,td
] t

= n2¹
2hsr ,td + l2u¹hsr ,tdu2 + hsr ,td, s3d

(3) The Mullins-Herring(MH) fourth-order linear equa-
tion: 3

2, 3
8, 4s1, 1

4 ,4d

] hsr ,td
] t

= − n4¹
4hsr ,td + hsr ,td, s4d

and
(4) The MBE fourth-order nonlinear equation:.1, . 1

3,
.3s. 2

3 , . 1
5 , . 10

3
d

] hsr ,td
] t

= − n4¹
4hsr ,td + l22¹

2us=hsr ,tdu2 + hsr ,td, s5d

wherenisi =2,4d andl js j =2,22d are constant. The quantity
hsr ,td represents the noise term which accounts for the
random fluctuations in the deposition rate. We assume
that the noise has Gaussian distribution with zero mean
and correlator:

khsr 1,t1dhsr 2,t2dl = Ddsr 1 − r 2ddst1 − t2d, s6d

D being a constant related to the strength of the bare noise.
Note that we do not include thestriviald constant external
deposition flux term in the continuum growth equations
since that is easily eliminated by assuming that the height
fluctuationh is always measured with respect to the average
interface which is growing at a constant rate.

The concepts of universality classes and scaling expo-
nents have been widely used in the literature to analyze the
kinetics of surface growth and fluctuations. Our study based
on persistence probabilities is motivated by the possibility
that the concept of persistence may provide an additional
(and complementary) tool to analyze the surface growth ki-
netics. It addresses fundamental questions such as: is persis-
tence an independent(and new) conceptual tool for studying
surface fluctuations or essentially equivalent(or perhaps
complementary) to dynamic scaling? and does persistence
lead to the definition of new universality classes on the basis
of the values of the persistence exponent? To answer these
questions, we consider, for each of the four universality
classes mentioned above[i.e., Eqs. (2)–(5), at least one
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growth model and investigate how the associated persistence
exponents are related to the dynamic scaling exponents men-
tioned above.

B. Transient and steady-state persistence probabilities

Our goal is to calculate the positive and negative persis-
tence probabilitiesfP±st0,t0+ tdg for a growing (fluctuating)
interface in the transient and steady-state regimes. Heret0 is
the initial time, and we are interested in evaluating the prob-
ability of the height at a fixed position remaining persistently
abovesP+d or belowsP−d its initial value(i.e., its value att0
by definition) during the time period betweent0 and t0+ t. If
one considers the special caset0=0, when the interface is
completely flat, then the quantity of interest is the probability
that the interfacial height(measured from its spatial average)
does not return to its initial zero value up to timet. This case
is known as thetransientsTd regime. For values oft that are
small compared to the time scale for saturation of the inter-
face widthftsatsLd~Lzg, the persistence probabilities in this
regime are expected to exhibit a power-law decay in time:

P±
Ts0,td ~ S1

t
Du±

T

, s7d

whereu±
T are called the transient positive and negative per-

sistence exponents. In the particular case oflinear continuum
growth equations, these exponents are equal because the
symmetry under a change of sign ofhsr ,td remains valid at
all stages of the growth process. However, in the case of
dynamics governed by nonlinear continuum equations, the
lack of this “up-down” interfacial symmetry implies thatP+
and P− (and therefore, the exponentsu+

T and u−
T) would, in

general, be different from each other. No universal relation-
ship between the transient positive and negative persistence
exponents and the dynamic scaling exponents is known to
exist for any one of the four universality classes mentioned
above.

On the other hand, if one considerst0 larger thantsatsLd,
then the quantity of interest is the probability that the inter-
facial height at a fixed position does not return to its specific
value at initial timet0 during the subsequent time interval
betweent0 andt0+ t. Instead of being flat, the interface mor-
phology at time t0 has completely developed roughness,
which produces persistence exponents that are different from
the transient exponents defined earlier. This case is known as
thesteady-statesSd regime. Ift!Lz, one expects to obtain in
this regime the steady-state persistence probability with a
power-law decay in time[23]

P±
Sst0,t0 + td ~ S1

t
Du±

S

, s8d

where u±
S are the steady-state positive and negative persis-

tence exponents. It has been pointed out by Kruget al. [23]
that for systems described bylinear Langevin equation, the
steady-state persistence exponents are related to the dynamic
scaling exponentb in the following way:

u+
S ; u−

S = 1 −b. s9d

The exponentb is well known for linear Langevin equations
for surface growth dynamics, and is given ind dimensions
by b=s1−d/zd /2 for nonconserved white noise[Eq. (6)],
wherez, the dynamical exponent, is here precisely equal to
the power of the gradient operator entering the linear con-
tinuum dynamical growth equation[i.e., z=2 in Eq. (2); z
=4 in Eq.(4)]. The relation defined by Eq.(9) holds true for
the Langevin equations of Eqs.(2) and (4), which are obvi-
ously linear, as well as for the special case of the
s1+1d-dimensional KPZ equation of Eq.(3) [24], which, de-
spite its nonlinearity, behaves as the linear EW equation in
the steady state. Since the positive and negative exponents
are expected to be different for general nonlinear Langevin
equations, the relation of Eq.(9) cannot be valid for bothu+

S

and u−
S in systems described by such nonlinear equations.

Therefore, at least one(or perhaps both) of these two persis-
tence exponents must be nontrivial in the sense that it is not
related to the usual dynamic scaling exponents. For this rea-
son we pay particular attention to the MBE nonlinear equa-
tion and investigate whether its persistence exponents can be
related to the dynamic scaling exponents.

III. ATOMISTIC GROWTH MODELS

In this paper, we use different atomistic limited-mobility
growth models for simulating surface growth processes. In
these models, the substrate consists of a collection of lattice
sites labeled by the indexj s j =1,2, . . . ,Ldd and the height
variableshsxjd take integral values. The term “limited mobil-
ity” is meant to imply that in these models, each adatom is
characterized by a finite diffusion length which is taken to be
one lattice spacing in most of the models we consider here.
Thus, a deposited atom can explore only a few neighboring
lattice sites according to a set of specific mobility rules be-
fore being incorporated into the growing film. The solid-on-
solid constraint is imposed in all these models, so that de-
fects such as overhangs and bulk vacancies are not allowed.
In most of the models considered in this work, the possibility
of desorption is neglected, thereby making the models “con-
served” in the sense that all deposited atoms are incorporated
in the film; the noise[given by Eq.(6)] is of course noncon-
served since the system is open to the deposition flux.

The deposition process is described by a few simple rules
in these models. An atomic beam drops atoms on the sub-
strate in a random manner. Once a lattice site on the substrate
is randomly chosen, the diffusion rules of the model are ap-
plied to the atom dropped at the chosen site to determine
where it should be incorporated. The allocated site is then
instantaneously filled by the adatom. We consider boths1
+1d- and s2+1d-dimensional models(one or two spatial di-
mensions and one temporal dimension) defined on substrates
of lengthL in units of the lattice spacing. The deposition rate
is taken to be constant and equal toLd particles per unit time
in our simulations of the Family(F), larger curvature(LC),
Das Sarma-Tamborenea(DT), Wolf-Villain (WV) and con-
trolled Kim-Das Sarma(CKD) models(see below). In these
simulations, one complete layer is grown in each unit of
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time. In the RSOS Kim-Kosterlitz(KK ) and Kim-Park-Kim
(KPK) models described below, the diffusion rules are re-
placed by a set of local restrictions on nearest-neighbors
height differences, which have to be satisfied after the depo-
sition. The randomly chosen deposition site is rejected(the
atom is not deposited) if these restrictions are not satisfied.
As a consequence, the number of deposition attempts does
not coincide with the number of successful depositions in the
KK model, although they are linearly related.

All conserved growth models satisfy the conservation law

] hsr ,td
] t

= − = · j sr ,td + hsr ,td, s10d

wherej is the surface current andh is the noise term. Using
different expressions, dictated primarily by symmetry con-
siderations, for the currentj , one can obtain all the conserved
Langevin equations discussed in Sec. II A. The atomistic
growth models considered in our work provide discrete real-
izations of these continuum growth equations.

It is known that some of the discrete growth models we
study here have complicated transient behavior[42,43]. For
this reason, obtaining the dynamic scaling exponents that
show the true universality classes of these models is often
quite difficult. To make this task easier, the noise reduction
technique [44,45] was introduced in simulations of such
models. It has been shown[39] that this technique helps in
suppressing high steps in the models and reduces the correc-
tions in the scaling behavior, so that the true asymptotic uni-
versality classes of the growth models can be seen in simu-
lations that cover a relatively short time. This makes it
interesting to examine whether the persistence probabilities
in these discrete models also exhibit similar transient behav-
ior, and whether the noise reduction technique can help in
bringing out the true persistence exponents of these models.
To investigate this, we have applied the noise reduction tech-
nique to some of the discrete models studied in this paper.

The noise reduction technique can be easily incorporated
in the simulation of any discrete growth model by a small
modification in the diffusion process[39]. When an atom is
dropped randomly, the regular diffusion rules for the growth
model are applied and the final allocated site is chosen. In-
stead of adding the atom at that final site, a counter at that
site is increased by one but the height of that site remains
unchanged. When the counter of a lattice site increases to the
value of a predetermined noise reduction factor, denoted by
m, the height at that lattice site is increased by one and the
counter of that site is reset back to zero. The value of the
noise reduction factorm should be chosen carefully. Ifm is
too small, the suppression of the noise effect is not enough
and the true universality class is not seen. However, ism is
too large, the kinetically rough growth becomes layer-by-
layer growth [46] and the universality class of the model
cannot be determined.

The atomistic models considered in our work are defined
below.

1. Family model

The Family(F) model [2] is an extensively studied SOS
discrete stochastic model, rigorously known to belong to the

same dynamical universality class as the EW equation. It
allows the adatom to explore within a fixed diffusion length
to find the lattice site with the smallest height where it gets
incorporated. If the diffusion length is one lattice constant
(this is the value used in our simulations), the application of
this deposition rule to a randomly selected sitej involves
finding the local minimum height value among the set:
hsxj−1d, hsxjd, andhsxj+1d [in s1+1d dimensions]. The height
of the site with the minimum height is then increased by one.

2. Larger curvature model

The Kim-Das Sarma model[5] is a more complex one
which allows the atomic surface currentj to be written as a
gradient of a scalar fieldK, j =−¹K, which can depend onh,
¹2h, u=hu2 and so on. In the particular case whenK=−¹2h,
one obtains the so-called larger curvature(LC) model. As the
name suggests, the diffusion rules applied to a randomly se-
lected sitej allow the adatom to get incorporated at the site
in the neighborhood of sitej where the local curvature[given
by hsxj+1d+hsxj−1d−2hsxjd in s1+1d dimensions] has the
largest value. The LC model asymptotically rigorously be-
longs to MH universality class described by Eq.(4).

3. Wolf-Villain model

The diffusion rules of the Wolf-Villain(WV) model [4]
allow the adatom to diffuse to its neighboring sites in order
to maximize its local coordination number which, for the
s1+1d-dimensional case, varies between 1 and 3 when the
bond with the atom lying below the site under consideration
is taken into account. In contrast to the F model, in this case
the surface develops deep valleys with high steps almost per-
pendicular to the substrate. For the range of times and
sample sizes used in the present study, the WV model may
be considered to belong to the MBE universality class[4,42]
described by Eq.(5). However, recent studies[39,47] have
shown that the asymptotic universality class of this model in
s1+1d dimensions is the same as that of the EW equation. In
contrast, ins2+1d dimensions, studies based on the noise
reduction technique[48] have revealed that the WV model
exhibits at very long times unstable(mounded) dynamic uni-
versality which cannot really be described by any of the con-
tinuum equations[Eqs.(2)–(4)] given above.

4. Das Sarma-Tamborenea model

The Das Sarma-Tamborenea(DT) model[3] is character-
ized by diffusion rules that are slightly different from those
in the WV model. In this case, the diffusing atom tries to
increaseits coordination number, not necessarily tomaxi-
mize it. For example, if a randomly selected deposition site
has its local coordination number equal to 1[i.e., no lateral
neighbor in s1+1d dimensions], and the two neighbors of
this site have coordination numbers equal to 2 and 3, the
deposited atom does not necessarily move to the neighboring
site with the larger local coordination number: it moves to
one of the two neighboring sites with equal probability(the
atom would necessarily move to the site with coordination
number 3 in the WV model). This minor change in the local
diffusion rules actually changes the asymptotic universality
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class: thes1+1d-dimensional DT model belongs to the MBE
universality class[39,48] corresponding to the nonlinear
continuum dynamical equation of Eq.(5). However, thes2
+1d-dimensional DT model asymptotically belongs to the
EW universality[48] at very long times.

5. Controlled Kim-Das Sarma model

The Kim-Das Sarma model mentioned above provides a
discrete realization of the continuum equation of Eq.(5) if
the scalar fieldK is chosen to beK=−¹2h+l22s=hd2. How-
ever, the discrete treatment of the spatial gradients produces
strong instabilities in the growth process due to uncontrolled
growth of isolated structures, such as pillars or grooves.
These instabilities can be easily controlled by introducing
higher order nonlinear terms[14]. We call this new model
the controlledKim-Das Sarma(CKD) model. In this model,
the scalar fieldK is chosen to beK=−¹2h+l22fsu=hu2d,
where the nonlinear functionf is given by

fsu=hu2d =
1 − e−cu=hu2

c
, s11d

with c.0 being the control parameter. The CKD diffusion
rules for a randomly chosen deposition sitej imply the mini-
mization of the scalar fieldK, using the standard discretiza-
tion scheme for the lattice derivatives¹2h and=h:

s¹2hdu j = hsxj+1d + hsxj−1d − 2hsxjd, s12d

u=huu j
2 = 1

4fhsxj+1d − hsxj−1dg2, s13d

in s1+1d-dimensions. By carefully choosing the values forc
andl22 [14], one can remove the nonlinear growth instabili-
ties completely and ensure an overall behavior of the CKD
model similar to that of the DT model.

6. Kim-Kosterlitz and Kim-Park-Kim models

For completeness, we also present in this paper the results
for the RSOS Kim-Kosterlitz(KK ) [7] and Kim-Park-Kim
(KPK) [8] models which are known to belong asymptotically
to the KPZ and MBE universality classes, respectively. The
common feature of these two models is the replacement of
the usual diffusion rules of the SOS models described above
by local restrictive conditions controlling nearest-neighbor
height differences.

In the KK model, deposition sites are randomly chosen,
but the incorporation of the adatoms into the substrate is
subject to a specific restriction: the deposition event occurs if
and only if the absolute value of the height difference be-
tween the randomly selected deposition sitej andeachof its
nearest-neighboring sites remains smaller than or equal to a
positive integern after deposition(our simulations were
done for n=1). If this strict constraint is not satisfied, the
attempted deposition of an adatom is rejected, and the ran-
dom selection of the deposition site is repeated until the
deposition is successfully done. Since every attempt to de-
posit an adatom is not successful, the definition of “time” in
this model is not quite the same as that in the other models

where every deposition attempt leads to the incorporation of
a new adatom in the growing film. In the KK model, the time
is equivalent to the average height, which is not the same as
the number of attempted depositions per site(these two
quantities are the same in the other models considered here).
The KK model is known to belong to the KPZ universality
class, and in fact provides the most numerically efficient and
accurate method for calculating the KPZ growth exponents.

Kim et al. [8] discovered that a slight change in the algo-
rithm for choosing the incorporation site transforms the KK
model into a new one, the KPK model, which belongs to the
MBE universality class. The change consists of extending
the search for appropriate incorporation sites(i.e, sites where
the constraint on the absolute values of the nearest-neighbor
height differences would be satisfied after the incorporation
of an adatom) to the neighbors of the originally selected
deposition sitej . If the original site does not satisfy the con-
straint, then the neighboring sites[j ±1 in s1+1d dimensions]
are checked, and an adatom is incorporated at one of these
sites if the incorporation does not violate the constraint. Oth-
erwise, the search is extended to the next-nearest-neighbors
of j , and so on until a suitable incorporation site is found. We
mention that in our implementation of this process, if, for
example, both the sitesj −k and j +k are found to be suitable
for incorporation, then one of them is chosen randomly with-
out any bias. Application of this algorithm ins2+1d dimen-
sions involves extending the search for suitable incorporation
sites to those lying inside circles of increasing radii around
the randomly selected deposition sitej . The diffusion and
incorporation rules of the KPK model[8] lead essentially to
a conserved version of the Kim-Kosterlitz RSOS model[7],
and as such the continuum growth equation corresponding to
the KPK model is the conserved KPZ equation(with non-
conserved noise), which is precisely the MBE equation; Eq.
(5) is the conserved version of Eq.(4) with nonconserved
noise in both.

IV. SIMULATION RESULTS AND DISCUSSION

A. Persistence exponents in„1+1… dimensions

Simulations fors1+1d-dimensional discrete growth mod-
els were carried out forb=1/4, 3/8, and 1/3. Thevalueb
=1/4 corresponds to the F model that has a relatively small
equilibration time(of the order ofL2). The remaining con-
servative models, characterized byb=3/8 (LC) and .1/3
(WV, DT, CKD, and KPK), have a much slower dynamics
(with z values 4 or 3). So their corresponding equilibration
time intervals, required for the interface roughness to reach
saturation, are of the order ofL4 andL3, respectively. For this
reason, the largest values ofL for which the steady state
could be reached in reasonable simulation time are consider-
ably shorter in these models than in the F model. The fastest
equilibration occurs in the KK modelsb=1/3d where z
=3/2.

In calculations of the transient persistence probabilities,
the initial configuration of the height variables is taken to be
perfectly flat, i.e.,hjst0d=0 s j =1,Ld. The lattice size was in
the range 104øLø106, and the duration of the deposition
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process, measured in units of number of grown monolayers
(ML ), was,103. The results were averaged over,103 in-
dependent runs. For measurements in the steady-state situa-
tion, a saturation of the interface roughness was first ob-
tained by depositing a large number(of the order ofLz) of
monolayers and subsequent time evolution from one of the
steady-state configurations obtained this way was used for
measuring the persistence probabilities. A much smaller lat-
tice length (L=1000 for the F model,L=500 for the KK
model, L=200 for the KPK model, andL=40 for the LC,
WV, DT, and CKD models) was used in these calculations in
order to reach the steady-state saturation within reasonable
simulation times.

The positive(negative) persistence probabilities in both
transient and steady-state regimes were obtained as the frac-
tion of sites that maintain the values of their heights persis-
tently above(below) their initial values, averaged over a
large numbers,104d of independent runs. The persistence
exponents were obtained from power-law fits to the decay of
these probabilities, as shown in Figs. 1–4 and 6–8 for the
transient and steady-state regimes, respectively.

For all the models studied here, we have also measured
the value of the growth exponentb in both transient and
steady-state simulations. Since the latter simulations were
carried out for smaller values of the system sizeL, these
measurements provide useful information about the depen-
dence of the measured exponent values on the lattice size.
Similar information is also provided by the values of the
transient persistence exponents obtained from measurements
in the initial stage of the steady-state simulations. The tran-
sient exponent values obtained from the large-L simulations
are listed in Table I, and both transient and steady-state ex-
ponent values obtained from simulations of relatively small
samples are shown in Table II. The measured values of the
growth exponentb are also shown in these tables.

Estimation of the probable error in the measured values of
the growth and persistence exponents is a delicate task(and
surely depends on precisely how the exponent error is de-
fined), since there is not a traditional accepted method to

evaluate the error in dynamical simulations. To solve this
problem we did the following simulations. We decreased the
number of independent runs used for the averaging proce-
dure by a factor of 2, keeping the size of the system constant.
Under these circumstances, we have measured the exponents
corresponding to the two different numbers of independent
runs and the differences between the obtained values of the
exponents were used as error estimates forb andu, respec-
tively. Approximately the same size of the error bar was
obtained from the estimations of fluctuations in the value of
the local slope of the double-log plots. We have also noticed
that a reduction of the lattice size(imposed for the steady-

FIG. 1. Transient persistence probability for the
s1+1d-dimensional linear F and LC growth models. As expected,
the positive and negative persistence probabilities are identical in
these models. The system size isL=106 for the F model andL
=104 for the LC model, and an average over 103 independent runs
was performed. The slopes of the double-log plots yield the values
of the transient persistence exponents shown in Table I.

FIG. 2. Positive and negative transient(bottom two curves) and
steady-state(top two curves, mostly overlapped) persistence prob-
abilities for the s1+1d-dimensional RSOS KK model. The faster
decay of the positive persistence probability in the transient regime
is due to the negative sign ofl2 in the equivalent continuum equa-
tion of Eq. (3). In the transient case, systems of sizeL=53104

were averaged over 53103 independent runs. The steady-state
simulation was done forL=500 and a similar average was
performed.

FIG. 3. Positive and negative transient persistence probabilities
for the s1+1d-dimensional nonlinear DT and WV growth models.
We note that despite the difference in their local diffusion rules,
these two models behave identically as far as the transient persis-
tence probability is concerned. The curves corresponding to the DT
model have been shifted upward in order to avoid a complete over-
lap of the plots for the two models. The system size isL=104 and
an average over 103 independent runs was performed. The slopes of
the double-log plots yield the transient persistence exponents given
in Table I.
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state persistence calculations) produces lower values of the
growth exponents, as shown in Table II. This is because the
downward bending(approach to saturation) of double-log
width versus time plots occurs at shorter times in simulations
of smaller systems. However, the smaller-L simulations seem
to lower the measured values of the growth exponents by a
maximum of about 10%. So we conclude that this effect is
not dramatic and that the steady-state results reported below
are reliable.

The measured values ofb agree reasonably well with the
expected ones(see Sec. II A) within their errors. As ex-
pected, the agreement is better in the case of larger values of
L. For the larger-L simulationssL,104d, we have found that
the growth exponents of the F, LC, and KK models are in
excellent agreement with their corresponding expected val-
ues of 1/4, 3/8, and 1/3, respectively(see Table I). The DT
and WV models are found to behave similarly at early(tran-
sient) stages of their interface growth, at least ins1+1d di-
mensions, their growth exponents being:bWV<0.37 and
bDT<0.38. The closeness of these values to the value of
3/8, which corresponds to the MH universality class, sug-
gests that the nonlinear term that appears in the associated
dynamic equation[i.e., Eq. (5)] has a very weak effect for
the range of lattice sizes used in our study. In addition, we
have found that the CKD model characterized by the nonlin-
ear coefficientl22=2 and control parameterc=0.02 has a
growth exponentbCKD,0.35, in agreement with Ref.[14].
These particular parameter values ensured the elimination of
any interfacial instability, thus allowing a calculation of the
steady-state persistence properties. Regarding the conserved
KPK model, we have observed that the growth exponent has
a value that is slightly smaller than 1/3, a result that agrees
with Ref. [8].

The temporal behavior of the transient persistence prob-
ability in our models is shown in Figs. 1–4. From these mea-
surements, we obtained the transient persistence exponents
by fitting the linear middle regions(excluding the small-t and
large-t ends, typically using the data for 20, t,800) of the
double-log plots to straight lines. As expected, due to the
invariance of the interfaces of the F and LC models(which
are characterized bylinear continuum equations) under a

FIG. 4. Positive and negative transient persistence probabilities
for the s1+1d-dimensional CKD(the upper two curves) and RSOS
(the lower two, almost overlapped curves) models that belong to
MBE universality class. In both cases the system size wasL=104

and an average over 103 independent runs was performed. The
slopes of the double-log plots yield the transient persistence expo-
nents given in Table I.

FIG. 5. Morphologies of thes1+1d-dimensional DT(top) and
CKD (bottom) stochastic models forL=104 (only a portion of 1000
sites is shown) andt=103 ML. In the DT model, we notice a break-
ing of up-down symmetry due to the formation of deep grooves,
while in the CKD model, the representative asymmetric feature
corresponds to high pillars.

TABLE I. Positive and negative persistence exponents,u+ and
u−, for the transientsTd regime, measured for seven different dis-
crete growth models(identified in the first column) using kinetic
Monte Carlo simulations with relatively large system sizessLd. The
measured growth exponent,b, and the universality class of the
model are indicated in the last two columns, respectively.

Growth
model L u+

T u−
T b

Universality
class

F 106 1.57±0.10 1.49±0.10 0.25±0.01 EW

KK 5 3104 1.68±0.02 1.21±0.02 0.33±0.01 KPZ

LC 104 0.84±0.02 0.84±0.02 0.37±0.01 MH

WV 104 0.94±0.02 0.98±0.02 0.37±0.01 MBE

DT 104 0.95±0.02 0.98±0.02 0.38±0.01 MBE

CKD 104 0.98±0.02 0.93±0.02 0.35±0.01 MBE

KPK 104 1.04±0.02 1.01±0.02 0.31±0.01 MBE
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change of sign of the height variables, we obtained equal
positive and negative transient persistence exponents within
the error bars, as displayed in Fig. 1. However, we mention
that the F model has a rather slow convergence of the posi-
tive and negative exponents towards their long-time value of
,1.55 observed in much longer simulations. The results for
F and LC models, which correspond tob=1/4 and 3/8,
respectively, agree well with the values reported by Kruget
al. [23]. The same level of agreement is also found in the
case of the KK model[24], shown in Fig. 2, for which the
transient persistence exponents areu+

T<1.68 andu−
T<1.21 in

s1+1d dimensions. We note that the negative persistence
probability has a slower decay than the positive one. This is
due to the constant coefficientl2 of the nonlinear term
u=hsr ,tdu2 of the KPZ equation(which provides a continuum
description of the KK model) having a negative sign[24].

For the models described by the fourth-order nonlinear
MBE equation(i.e., WV, DT, CKD, and KPK models), we
expect to find different positive and negative transient per-
sistence exponents due to the fact that their morphologies
violate the up-down interfacial symmetry with respect to the
average level. No information about how different these two
exponents should be is available in the literature. In most of
these growth models, we observe that the two exponents are
not very different from each other, especially during the tran-
sient regime. Figure 3 shows the transient regime results for
DT and WV models, which are indeed very similar—their
persistence probability curves have almost identical behav-
ior. We note here that the negative persistence probability has
a faster decay than the positive persistence probability. This
indicates a negative sign ofl22, the coefficient that multi-
plies the nonlinear term¹2u=hsr ,tdu2 of the MBE equation.
However, the relative order of the values of these exponents
is reversed whenl22.0, which is the case in the CKD and
KPK models, as shown in Fig. 4. To clarify this aspect, we
show in Fig. 5 the interfacial morphologies of DT and CKD
models. We used a lattice ofL=104 sites(but only a portion
of 1000 sites is shown in each case) and the displayed con-
figurations correspond to a time of 103 ML. The interface of
the DT model is characterized by deep grooves, while the
profile in the CKD model exhibits the distinct feature of high
pillars. Both morphologies display strong up-down interfa-
cial asymmetry, but their representative features(i.e., deep
grooves and high pillars) are opposite in “sign”, indicating a
reversal of the sign of the coefficientl22 [note that a reversal
of the sign ofl22 in Eq. (5) is equivalent to changing the sign
of the height variablehsr ,td].

As summarized in Table I, the DT, WV, and CKD models
show very similar values for the transient persistence expo-
nents when the above mentioned effect of the sign ofl22 is
taken into account. However, some deviation from the expo-
nent values for this group of models is observed in the RSOS
KPK model which shows the smallest difference between the
positive and negative persistence exponents. Finite size ef-
fects appear to be stronger in this case. These effects also
cause an increase in the measured values of the persistence
exponents above the expected values. A similar behavior is
found in the steady-state results as well, as described below.

Our calculations of WV, DT, CKD, and KPK persistence
exponents illustrate the feasibility of studying this type of

nonequilibrium statistical probabilities for a large class of
nonequilibrium applications described by nonlinear dynami-
cal equations. Until now, the only nonlinear equation for
which persistence exponents have been calculated[24] is the
KPZ equation which is arguably the simplest nonlinear
Langevin equation. Further, the nonlinearity in the KPZ
equation becomes irrelevant in the steady-state regime in
s1+1d-dimensions. So, the effects of nonlinearity are not re-
flected in the steady-state persistence behavior of
s1+1d-dimensional KPZ systems. An immediate concern
would be that more complex nonlinear dynamic equations
might be less approachable from the point of view of persis-
tence probability calculation. Our results for four nonlinear
models eliminate this possibility and illustrate the applicabil-
ity and usefulness of persistence probability calculations in
the study of surface fluctuations.

Figures 6–8 display our results for the steady-state persis-
tence probabilities. The values of the growth and persistence
exponents obtained from the steady-state simulations are
summarized in Table II. The values of the steady-state per-
sistence exponents in the F and LC models, corresponding,
respectively, to the¹2 and ¹4 linear equations,(see Fig. 6)
are consistent with the values of the corresponding growth
exponents[as predicted by Eq.(9)] obtained from the same
small-L simulations. For the WV and DT models, as shown
in Fig. 7, we obtain very similar positive and negative per-
sistence exponents. In the case of the KK model we find, as
expected, identical positive and negative exponentssu±

S

<0.71d, as shown in Fig. 2.
Among the models belonging to the MBE universality

class, the KPK model exhibits steady-state persistence expo-
nents that are systematically higher than the ones obtained
for the remaining three(WV, DT, and CKD) models. Our
study of the dynamical scaling behavior of the KPK model
indicates that botha s,0.9d andz s,2.9d in this model are
reasonably close to the expected values, in agreement with
Ref. [8]. Therefore, the reason for the differences between

FIG. 6. Positive and negative steady-state persistence probabili-
ties for thes1+1d-dimensional F and LC models which are gov-
erned by linear continuum dynamical equation. The temporal decay
of the persistence probability is slower in the LC model which has
a larger growth exponent(bLC=3/8, bF=1/4). We usedL=1000
andt0=43106 ML for the F model, andL=40, t0=106 ML for the
LC model. The displayed results were averaged over 5000 indepen-
dent runs. The measured slopes of the double-log plots yield the
steady-state persistence exponents shown in Table II.
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the values of the steady-state persistence exponents for the
KPK model and those in the other models in the MBE uni-
versality class is unclear. This discrepancy may very well be
arising from subtle differences in finite size(and time) ef-
fects in the simulations for persistence exponents and dy-
namic scaling. Further investigation of the applicability of
this RSOS model in understanding MBE growth is beyond
the scope of the present study.

As shown in Fig. 8, a nice illustration of the presence of
nonlinearity in the underlying dynamical equation is pro-
vided by the steady-state persistence exponents of the CKD
model, characterized by distinct values,u+

S<0.78 andu−
S

<0.66, of the positive and negative exponents. Although one
must take into account the fact that these values might be
slightly overestimated(by approximatively 5%) due to the
smallness of the sample sizes used in the steady-state simu-
lations, these exponents provide a good qualitative account
of the nontrivial up-down asymmetric persistence behavior

expected for nonlinear models belonging to the MBE univer-
sality class.

Next we investigate the influence of small sample sizes on
the measured values of the persistence exponents. We mainly
used the DT model to answer this question and we pursued
the following two tests. First we decreased the size of the
system from 104 to 100 and then to 40 and found the values
of the growth and persistence exponents, as summarized in
Table III. We note that as the lattice length decreases to 40,
the persistence exponents increase by,2%, while the
growth exponents increase by,5%. As a second test, we
have applied the noise reduction technique to both the DT
and WV models. It has been shown[39] that a noise reduc-
tion factor of m=5 helps the DT model to recover quite
accurately the universal exponents corresponding to the
MBE universality class. In addition, the noise reduced WV
model exhibits, at late evolution times, its true EW
asymptotic universality, which is difficult to observe without
applying noise reduction. Therefore, the DT model with the
appropriate noise reduction factor is expected to provide the

TABLE II. Positive and negative persistence exponents,u+ and u−, for the transientsTd and the steady
statesSd regimes of our seven different discrete growth models, obtained from simulations with relatively
small samples sizessLd. To illustrate the effects of reduced system sizes on the measured exponents, we have
shown the values ofb obtained from these simulations in the last column.

Growth model L u+
T u−

T u+
S u−

S b

F 103 1.67±0.10 1.56±0.10 0.78±0.02 0.76±0.02 0.25±0.01

KK 5 3102 1.70±0.02 1.27±0.02 0.71±0.02 0.71±0.02 0.30±0.01

LC 40 0.98±0.02 0.96±0.02 0.67±0.02 0.67±0.02 0.32±0.01

WV 40 0.94±0.02 0.99±0.02 0.65±0.02 0.70±0.02 0.35±0.01

DT 40 0.98±0.02 1.01±0.02 0.64±0.02 0.72±0.02 0.36±0.01

CKD 40 1.11±0.02 0.99±0.02 0.78±0.02 0.66±0.02 0.33±0.01

KPK 23102 1.16±0.02 1.09±0.02 0.70±0.02 0.68±0.02 0.28±0.01

FIG. 7. Steady-state persistence probabilities for two(111)-
dimensional models in the MBE universality class—the DT and
WV models. As in the transient case, these two models exhibit
almost identical persistence behavior in the steady state. The effects
of the nonlinearity in their continuum dynamical description are not
very prominent for the small lattice sizes considered here. For the
data shown, systems of sizeL=40 were equilibrated fort0
=105 ML, and the results were averaged over 5000 independent
runs. The persistence plots for the DT model have been shifted up
in order to make them distinguishable from the WV plots. The
measured slopes of the double-log plots yield the steady-state per-
sistence exponents shown in Table II.

FIG. 8. Double-log plots of the steady-state persistence prob-
abilities of s1+1d-dimensional MBE class CKD and KPK(shifted
up by a constant amount) models. While the KPK model does not
show a clear effect of nonlinearity in the values of the persistence
exponents, the CKD model shows positive and negative persistence
exponents that are clearly different from each other. Systems of size
L=40 (CKD) and L=200 (KPK) were equilibrated for t0
,105 ML. The results were averaged over 104 independent runs.
The measured slopes of the double-log plots yield the steady-state
persistence exponents shown in Table II.
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correct persistence exponents associated with the fourth-
order nonlinear dynamical equation for MBE growth. The
results obtained from the simulations with noise reduction
are summarized in Table IV. We notice that the noise reduc-
tion scheme produces only a minor change in the persistence
exponents and in addition, the results obtained form=5
agree within the error bars with those for the CKD model.
We, therefore, conclude that the noise reduced DT model and
the discrete CKD model provide a good representation of the
MBE universality class, characterized by two different
steady-state persistence exponents:u+

S,0.66 (positive per-
sistence) and u−

S,0.78 (negative persistence). These non-
trivial persistence exponents for this class have not been re-
ported earlier, and it would be useful to check these results
from further theoretical or experimental studies. Regarding
the noise reduced WV model we mention that the conver-
gence ofuS towards the expected value of 3/4 is rather slow
in the case of the positive exponent and probably a higher
value of the noise reduction factor would be necessary to
reveal the true EW universality. We did not explore this tech-
nical issue any further.

We note that among the positive and negative steady-state
persistence exponents for these nonlinear growth models, the
smaller one(for example, the positive exponent in the DT
model or the negative exponent of the CKD model), turns
out to be close tos1−bd. In the following section, we show
analytically that this relation between the smaller steady-
state persistence exponent and the dynamic growth exponent
is, in fact, exact. Our numerical studies suggest a connection

of this result with the morphology that develops in the
steady-state regime. As shown in Fig. 5, the characteristic
feature of the DT morphology is the presence of deep
grooves, while the CKD model exhibits high pillars. Loosely
speaking, in the case of the DT model, we expect the relation
of Eq. (9) to be more likely to be satisfied by the positive
persistence exponent than the negative one because the pre-
ponderant grooves, responsible for the negative persistence
exponent, represent the effects of the nonlinearity of the un-
derlying MBE dynamics. More work is clearly needed for a
better understanding of the possible relationship between
such “nonlinear” features of the interface morphology and
the value of the persistence exponent.

B. An exact relation between steady-state persistence
exponents and the growth exponent

As mentioned earlier, for interface heightshsr ,td evolving
via a Langevin equation that preservessh→−hd symmetry
(for example, any linear Langevin equation), the steady-state
persistence exponents satisfy the scaling relationu+

S=u−
S=1

−b, whereb is the growth exponent[23]. In this section, we
derive a generalized scaling relation,

b = maxf1 − u+
S,1 −u−

Sg, s14d

which is valid even in the absence ofsh→−hd symmetry.
When this symmetry is restored, Eq.(14) reduces to the
known result[23], u+

S=u−
S=1−b.

To derive the relation in Eq.(14), we start with a generic
interface described by a height fieldhsr ,td and define the

relative height, usr ,td=hsr ,td− h̄sr ,td where h̄sr ,td
=ehsr ,tddr /V is the spatially averaged height andV is the
volume of the sample. Let us also define the incremental
autocorrelation function in the stationary state,

Cst,t8d = lim
t0→`

kfusr ,t + t0d − usr ,t8 + t0dg2l. s15d

It turns out that for generic self-affine interfaces(which do
not have to be Gaussian), this functionCst ,t8d depends only
on the time differenceut− t8u (and not on the individual times
t and t8) in a power-law fashion for largeut− t8u [24,49],

Cst,t8d , ut − t8u2b, s16d

whereb is the growth exponent.
This particular behavior of the autocorrelation function in

Eq. (16) is typical of a fractional Brownian motion(fBm). A
stochastic processxstd with zero mean is called an fBm if its
incremental correlation functionCst1,t2d=kfxst1d−xst2dg2l
depends only on the time differenceut1− t2u in a power-law
fashion for large arguments[50],

Cst1,t2d = kfxst1d − xst2dg2l , ut1 − t2u2H, s17d

where 0,H,1 is called the Hurst exponent of the fBm. For
example, an ordinary Brownian motion which evolves as
dx/dt=hstd wherehstd is a Gaussian white noise with zero
mean and ad function correlator, satisfies Eq.(17) with H
=1/2. Thus an ordinary Brownian motion is a fBm withH
=1/2. It follows clearly by comparing Eqs.(16) and(17) that

TABLE III. Transient positive and negative persistence expo-
nentsu±

T obtained for the DT model with different system sizessLd.
The effect of the system size on the measured growth exponent,b,
is displayed in the last column. No result for steady-state persis-
tence exponents is available for system sizes larger than,100, due
to the impossibility of reaching saturation of the interface width for
such values ofL in time scales accessible in simulations. The results
shown here were averaged over 500(for L=104), 53104 (for L
=100), and 105 (for L=40) independent runs.

L u+
T u−

T b

104 0.95±0.02 0.98±0.02 0.38±0.01

102 0.96±0.02 0.99±0.02 0.37±0.01

40 0.98±0.02 1.01±0.02 0.36±0.01

TABLE IV. Positive and negative persistence exponentsu±
S for

the steady state of the DT and WV models for two different values
of the noise reduction factorm. Systems of sizeL=40 were equili-
brated for 105 ML and the results were averaged over 5000 inde-
pendent runs.

Growth model m u+
S u−

S

DT 1 0.64±0.02 0.72±0.01

DT 5 0.65±0.02 0.77±0.01

WV 1 0.65±0.02 0.70±0.01

WV 5 0.68±0.02 0.75±0.01
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the relative heightusr ,td of a generic interface at a fixed
point r in space, in its stationary state, is also a fBm with
Hurst exponent,H=b. Note that an fBm is not necessarily
Gaussian.

We are then interested in the “no return probability” to the
initial value of the fBm processusr ,td. So, the relevant ran-
dom process isYsr ,td=usr ,t+ t0d−usr ,t0d. Clearly,Ysr ,td is
also a fBm with the same Hurst exponentb since the incre-
mental correlation function ofY is the same as that ofusr ,td.
We are then interested in the zero-crossing properties of the
fBm Ysr ,td. Now, consider the processYsr ,td as a function
of time, at a fixed pointr in space, from timet0 to time t0
+ t where t0→`. There are two types of intervals between
successive zero crossings in time, the “+” type(where the
process lies above 0) and the “−” type(where the process
lies below 0).

In general, the statistics of the two types of intervals are
different. Only, in special cases, where one has the additional
knowledge that the processYsr ,td is symmetric around 0
(i.e., processes which preserve thesh→−hd symmetry), the
+ and − intervals will have the same statistics. For such
cases, a simple scaling argument was given in Ref.[23] to
show that the length of an interval of either type has a power-
law distribution, Qstd,t−1−uS

(for large t) with uS=1−H
=1−b. Note that this relation between the persistence expo-
nent and the Hurst exponent is very general and holds for
any symmetric fBm, i.e., any stochastic process with zero
mean (not necessarily Gaussian) satisfying Eq. (17). Re-
cently, other applications of this result have been found
[51,52]. For general nonsymmetric processes, however, one

would expect thatQ±std,t−1−u±
S

for larget, whereu+
S andu−

S

are, in general, different. Here we generalize this scaling
argument of Ref.[23] (derived for a symmetric process) to
include the nonsymmetric cases and derive the result in Eq.
(14).

The derivation of Eq.(14) follows more or less the same
line of arguments as that used in Ref.[23] for the symmetric
case. LetPsY,td denote the probability that the process has
valueY at timet, given that it starts from its initial value 0
at t=0. Then, it is natural to assume that the normalized
probability distributionPsY,td has a scaling form,

PsY,td =
1

sstd
fS Y

sstd
D , s18d

where sstd is the typical width of the process,s2std
=kY2stdl. It follows from Eq.(16) that sstd,tb for larget.
The scaling functionfszd is a constant atz=0, fs0d,Os1d
(note that, in general,fszd is not a symmetric function ofz)
and should decrease to 0 asz→ ±`. So, given that a zero
occurs initially, the probabilityrstd=Ps0,td that the process
will return to 0 after timet (not necessarily for the first time)
scales as

rstd ,
1

sstd
, t−b, s19d

as t→`. This functionrstd indeed is the density of zero
crossings betweent and t+dt. Thus, the total number of
zeros up to a timeT is simply the integral,

NsTd =E
0

T

rstddt , T1−b, s20d

for largeT.
Next, we relate the persistence probabilities to the number

of zeros. LetP±std denote the probabilities that the process
stays positive(or negative) over the intervalf0,tg, given that

it started from a zero. By definition, we haveP±std,t−u±
S

for

larget. Then,Q±std=−dP±std /dt,t−1−u±
S

(ast→`) denote
the probabilities that the process will cross zero next time
(from the positive or the negative side respectively) between
time t and t+dt. Thus, Q±std are also the distribution of
intervals of the two types of lengtht.

Now, consider a total length of timeT. Let NsTd denote
the total number of intervals in this period, half of them are
+ types and the other half − types,N±sTd=NsTd /2. Let n±std
denote the number of ± intervals of lengtht within the pe-
riod T. Thus, the fraction of +(or −) intervals of lengtht,
n±std /N±std, by definition, are the two distributionsQ±std
providedT is large. Thus, for largeT, we have

n±st,Td =
NsTd

2
Q±std , NsTdt−1−u±

S
, s21d

for 1!tøT. On the other hand, we have the length conser-
vation condition(the total length covered by the intervals
must beT),

E
0

T

dtt fn+std + n−stdg = T. s22d

Substituting the asymptotic behavior ofn±std in Eq. (21) into
the left-hand side of Eq.(22), we get

NsTdF T1−u+
S

1 − u+
S +

T1−u−
S

1 − u−
SG ~ T. s23d

We next useNsTd,T1−b for large T from Eq. (20). This
gives, for largeT,

F T1−u+
S

1 − u+
S +

T1−u−
S

1 − u−
SG , Tb. s24d

Taking T→` limit and matching the leading power ofT in
Eq. (24), we arrive at our main result in Eq.(14). Note that in
the above derivation we have implicitly assumed a small-t
cutoff and focused only on the distribution of large intervals.
Our numerical results obtained for a class of nonlinear inter-
faces in boths1+1d and s2+1d dimensions(see Sec. IV D
below) are consistent with the analytical result in Eq.(14).

C. Dependence of persistence probabilities on the initial
configuration

We present in this section some surprising simulation re-
sults about the dependence of the persistence behavior(spe-
cifically, the values of the persistence exponents) on the
choice of the initial configuration. In particular, we show that
the steady-state exponents may be obtained with a fair de-
gree of accuracy from simulations in which the interfacehas
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not yet reached the steady state. We also present some results
that have bearing on the measurability of the transient per-
sistence exponents from experimental data.

We recall that in Sec. IV A the transient persistence ex-
ponents were measured from simulations in which the initial
configuration was completely flat, corresponding tot0=0. To
examine the dependence of the persistence probabilities on
the choice oft0, we evolved samples governed by F and DT
atomistic diffusion rules fort0=10, 100, and 1000 ML, start-
ing from perfectly flat initial states and used the resulting
configurations as starting points for measuring the persis-
tence probability(the probability of the height at a given site
not returning to its initial value at timet0) as a function oft.
We show the results of these simulations in Figs. 9 and 10
for the F and DT models, respectively. We find that even for
the small value oft0=10 ML [see panel(a)], the observed
persistence probabilities do not exhibit power-law decay in
time with the transient persistence exponents, despite the fact
that the expected condition[23] for transient behavior,t
@ t0, is well satisfied in a large part of the range oft used in
these simulations. These results point out a practical diffi-
culty in obtaining experimental evidence for transient persis-
tence behavior. Since perfectly flat initial configurations can
hardly be achieved experimentally and experimental mea-
surements are always started from a relatively rough sub-
strate, the transient persistence exponents may very well not

be measurable from experiments if the only way of measur-
ing these exponents is to start from a perfectly flat morphol-
ogy.

As the value oft0 is increased to 100 ML, the persistence
probabilities tend to show the expected power-law behavior,
as shown in Fig. 9(b) for the F model and in Fig. 10(b) for
the DT model. Most surprisingly, as shown in Figs. 9(c) and
10(c), we find that fort0=1000 ML, one recovers precisely
the power-law behavior,Pst0,t0+ td~ t−uS

, and the exponents
are essentially the same as the previously obtained steady-
state ones shown in Table II. This investigation, thus, reveals
the fact that a measurement of the steady-state persistence
exponents does not require the preparation of an initial state
in the long-time steady-state regime where the interface
width has reached saturation: an initial state in the preasymp-
totic growth regime where the interface width is still increas-
ing as a power law in time[as illustrated in Figs. 9(d) and
10(d)] is sufficient for measurements of the steady-state per-
sistence exponents. A similar result was reported in Ref.
[23], but it was argued there that the measurement timet
must be much smaller thant0 for steady-state persistence
behavior to be observed. Our results show that the steady-
state persistence exponents are found even ift is of the order
of (or even slightly larger than) the initial time t0. This ob-
servation has an important practical benefit: it implies that
one can easily obtain accurate estimates of the steady-state

FIG. 9. Log-log plots of the positive and negative persistence probabilities[panels(a)–(c)] for the F model, obtained using different
values of the initial timet0. Systems withL=104 sites have been averaged over 500 independent runs. Persistence probabilities are computed
starting from the configuration corresponding to:(a) t0=10 ML. We do not find a clear power-law decay of the persistence curves.(b) t0
=100 ML. As t0 increases, a clearer power-law behavior is observed.(c) t0=1000 ML. The power-law decays are recovered and character-
ized by exponents in agreement with those corresponding to the steady-state regime:u±

S<0.75.(d) Log-log plot of the interface widthW as
a function of timet (in units of ML). The value of the slope(equal to the growth exponentb) agrees with the expected value,b=0.25.
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persistence exponents using rather large systemssL,104d,
and growing approximately up tot0,103 ML, instead of
having to use the very large values(of the order ofLz) of t0
necessary for obtaining saturation of the interface width. At
the same time, this observation also illustrates the above
mentioned difficulty in obtaining the transient exponents
from experimental measurements.

To investigate the effects of random imperfections in the
initial substrate(which are always present in experimental
studies) on the persistence behavior, we carried out simula-
tions in which particles were deposited randomly on a per-
fectly flat substrate for 10 ML and the resulting configuration
was used for further depositions using the diffusion rules of
the F and DT models. Persistence probabilities were calcu-
lated starting from the configurations obtained after the ran-
dom deposition of 10 ML. Figures 11 and 12 show the re-
sults for the F and DT models, respectively. We find that
even when the persistence calculation starts from a configu-
ration characterized by random deposition, there is an indi-
cation that one can still obtain the steady-state exponents
during the last decade oft where the growth exponent
reaches the values characteristic of the diffusion rules of the
specific (F or DT) model being considered. Indeed, in the
time region where the growth exponents areb=0.25 for the
F model[see Fig. 11(b)] andb=0.375 for the DT model[see
Fig. 12(b)], we have calculated the persistence exponents
and recovered values very close to the steady-state ones.

These observations confirm our earlier conclusions about the
relatively easy measurability of the steady-state persistence
exponents and the difficulty in measuring the transient expo-
nents in experimental situations.

D. Persistence exponents in (211) dimensions

Our calculations ins2+1d dimensions make use of our
observation(discussed above) concerning the possibility of
obtaining the correct steady-state exponents from simula-
tions that avoid the time consuming process of reaching the
true steady state where the interface width has saturated. The
result that the persistence exponents obtained from
s1+1d-dimensional simulations using fairly small values of
t0 and t, t0 are quite close to the steady-state values allows
us to extract numerically the steady-state persistence expo-
nents in s2+1d dimensions using systems with reasonably
large sizes. If one had to run systems of sizeL,1003100
all the way to saturation in order to measure the steady-state
persistence exponents, it would have been impossible to do
the calculations within reasonable simulation time. In addi-
tion, decreasing the system size is not an acceptable solution
because the results then become dominated by finite size
effects.

Simulations fors2+1d-dimensional discrete growth mod-
els were carried out for the F modelsb=0d and the DT
model sb.1/5d. Simulations using systems of sizeL

FIG. 10. Positive and negative persistence probabilities[panels(a)–(c)] for the DT model, obtained using different values of the initial
time t0. Persistence probabilities are computed starting from the configuration corresponding to:(a) t0=10 ML. As in the case of the F model,
we do not find a clear power law for the persistence curves.(b) t0=100 ML; (c) t0=1000 ML: Power-law decays are recovered and
characterized by exponents that are approximately equal to those corresponding to the steady-state regime,u+

S<0.64 andu−
S<0.71. (d)

Log-log plot of the interface widthW as a function of timet (in units of ML). The slope gives a growth exponent ofbDT.0.375.
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=2003200 revealed that the growth exponents, obtained
from averages over 200 independent runs, areb
=0.04±0.01 and 0.20±0.01 for the F and DT models, re-
spectively, in agreement with Ref.[42]. In the DT model, we
noticed a crossover from the initial value of 0.26 to the
asymptotic expected value of 0.20, indicating that no addi-
tional noise reduction technique is necessary for obtaining
results that reflect the correct universality class of this model.
For both F and DT models we calculate the transient and
steady-state persistence probabilities by recording the frac-
tion of sites which do not return to their initial height up to
time t, as in the(111)-dimensional case. We usedt0=0 (per-
fectly flat initial state) in the calculation of the transient per-
sistence probabilities, and three different values, such ast0
=20 ML, 200 ML, and 2000 ML for the F model, in the
calculation of the steady-state exponents.

We report the results for the transient probabilities just for
the sake of completeness: the rapid decay of the persistence

probabilities prevents us from obtaining accurate values of
the associated persistence exponents. This fast decay of the
transient persistence probability is a consequence of the re-
duced roughness of these higher dimensional models. This
effect is particularly pronounced for the F model for which
the persistence exponent is found to be larger than 6 and the
persistence probability decreases rapidly to zero for any
deposition time larger than,60 ML, as shown in Fig. 13.
We also observe that the transient values of the positive and
negative persistence exponents in the DT model are roughly
three times larger than the values obtained in the
s1+1d-dimensional case. The relative difference between the
positive and negative persistence exponents remains approxi-
mately the same as that in thes1+1d-dimensional model.
Our results for theses2+1d-dimensional persistence expo-
nents are summarized in Table V.

We now focus on the steady-state persistence exponents
which, as discussed above, are found using relatively small

FIG. 11. (a) Positive and negative persistence probabilities for the F model. During the deposition of the first 10 ML, the growth process
is random deposition. The diffusion rules of the F model are then used to evolve the interface. Persistence probabilities are computed starting
from the configuration obtained after the random deposition of 10 ML. The positive and negative persistence exponents in the last growth
decade are in the range 0.6 to 0.7, depending on the fitting region.(b) Log-log plot of the interface widthW as a function oft (in ML ). The
slope in the first decade oft is precisely the random-deposition value,b=0.5. The second decade shows a crossover region where the systems
undergoes a transformation towards a morphology governed by the F model diffusion rules, and the last decade is characterized by the
expected growth exponent of the F model,b=0.25.

FIG. 12. (a) Positive and negative persistence probability curves for the DT model. During the deposition of the first 10 ML, the growth
process is random deposition. The diffusion rules of the DT model are used to evolve the interface subsequently. Persistence probabilities are
computed starting from the configuration obtained after the deposition of the first 10 ML. The positive and negative persistence exponents
in the last growth decade are approximatively equal to 0.66 and 0.79 respectively.(b) Log-log plot of the interface widthW as a function of
time t (in ML ). Beyond the crossover regime, the last decade int is characterized by the expected growth exponent of the DT model,b
.0.375.
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values oft0 and t< t0. In Fig. 14(a), we show that fort0! t
(e.g., for t0=20 ML), the persistence probability of the F
model does not exhibit a clear power-law decay. However
panels(b) and (c) of Fig. 14 reveal that oncet0 becomes of
the order of the measurement timet, the expected power law
is recovered and in addition the steady-state exponent for the
linear F model,uS=1.01±0.02, which should be equal to
s1−b) with b=0, is recovered. The results for the DT model
are presented in Fig. 15. The steady-state persistence expo-
nents have been measured from the power-law decays shown
in Fig. 15(b). In this temporal regime, as shown in panel(d),
the growth exponent is equal to the asymptotic value of 1/5.
The persistence behavior of the DT model in this regime is
characterized byu+

S<0.76 andu−
S<0.85, indicating that the

relation of Eq. (14) holds reasonably well for the(211)-
dimensional nonlinear MBE dynamics, as in the
s1+1d-dimensional case. It is important to mention that the
same values of the persistence exponents have been obtained
using a DT system withL=40340, equilibrated fort0
=105 ML, as required in the traditional method[used in most
of the s1+1d-dimensional simulations] of measuring the
steady-state persistence probabilities. Thus the “quick and
easy” method of obtaining the steady-state persistence expo-
nent again agrees well with the exponent extracted from the

actually saturated interface, as discussed above.
We have also performed some preliminary persistence

calculations for thes2+1d-dimensional CKD model in order
to check the validity of our reporteds2+1d-dimensional
MBE persistence exponents. UsingL=1003100 and t0
=1000 ML, we find that the values of the positive and nega-
tive persistence exponents depend to some extent on the cho-
sen values for the coefficientl22 of the nonlinear term and
the control parameterc. For example, we obtainu+

S<0.82
andu−

S<0.77 usingl22=5.0 andc=0.085, andu+
S<0.88 and

u−
S<0.83 usingl22=5.0 andc=0.13. Both cases are charac-

terized by a growth exponent of 0.18±0.01, in agreement
with Ref. [53], which is consistent with the expected value of
1/5. The results obtained in the latter case are displayed in
panel(c) of Fig. 15 for the purpose of illustrating the simi-
larity between the DT and CKD models. From these obser-
vations, we conclude that the(211)-dimensional DT and
CKD persistence results are consistent with each other and
they clearly reflect the nonlinearity of the MBE dynamical
equation in the difference between the values of the positive
and negative persistence exponents as expected for the up-
down asymmetric generic nonlinear situation.

E. Scaling behavior of the persistence probability

Since all the results described above have been obtained
from simulations of finite systems, it is important to address
the question of how the persistence probabilities are affected
by the finite system size. We have already encountered such
effects in our study of persistence probabilities for
s1+1d-dimensional models(see Table III), where it was
found that the measured values of the persistence exponents
in the steady state increase slightly as the system sizeL is
decreased, while the value of the growth exponentb de-
creases with decreasingL. We did not investigate finite size
effects in our study of the transient persistence probabilities
because these studies were carried out for large values ofL
and relatively small values of the timet.

The qualitative dependence of the measured values of the
steady-state persistence exponentsu±

S and the growth expo-
nentb on the sample sizeL is not difficult to understand. The
steady-state persistence probabilitiesP±

Sst0,t0+ td exhibit a
power-law decay with exponentu±

S as long as the timet is
small compared to the characteristic time scaletsLd of the
system which is proportional toLz. The decay ofP±

S becomes
faster ast approaches and exceeds this characteristic time
scale. Since this departure from power-law behavior occurs
at earlier times for smaller systems, the value of the persis-
tence exponent extracted from a power-law fit to the decay of
the persistence probability over a fixed time window is ex-
pected to increase as the system size is reduced. In a similar
way, the measured value ofb is expected to be smaller for
relatively small values ofL because the precursor to the satu-
ration of the width at long times occurs at shorter values oft
in smaller systems. Thus, the general trends in the system
size dependence of the persistence and growth exponents are
reasonable. However, it would be useful to obtain a more
quantitative description of these trends.

Since the characteristic time scaletsLd (“equilibration” or
“saturation” time) of a system of linear sizeL is proportional

FIG. 13. Transient persistence probabilities for the
s2+1d-dimensional F and DT growth models. In the case of the F
model, systems of sizeL=100031000 have been averaged over
200 independent runs, while for the DT model, systems of sizeL
=5003500 have been averaged over 800 independent runs. The
transient persistence probability for the F model exhibits a very fast
decay, characterized by a persistence exponentuT<6.9 for the last
decade oft. More accurate results(see Table V) are obtained for the
exponents in the DT model, although the statistics is not excellent.

TABLE V. Transient and steady-state persistence exponents,u±,
for two s2+1d-dimensional discrete growth models. The measured
value of the growth exponentb is shown in the last column. The
transient persistence exponents are measured with relatively low
accuracy due to the rapid temporal decay of the persistence
probabilities.

Growth
model L u+

T u−
T u+

S u−
S b

FM 2003200 .6 .6 1.02±0.02 1.00±0.02 0.04±0.01

DT 2003200 2.84 2.44 0.76±0.02 0.85±0.02 0.20±0.01
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to Lz, one expects, in analogy with the theory of finite size
scaling in equilibrium critical phenomena, that the steady-
state persistence probabilityP±

Sstd (in this discussion, we
omit the initial time t0 in the argument ofP±

S because the
steady-state persistence probability is independent of the
choice oft0) would be a function of the scaling variablet /Lz.
Another time scale has to be taken into consideration in a
discussion of the scaling behavior of the persistence prob-
ability. This is the sampling timedt which is the time interval
between two successive measurements of the height at a
fixed spatial point. In our simulations of the atomistic growth
models, the smallest value ofdt is 1 ML because the heights
are measured after each deposition of one complete(ideal)
monolayer. However, larger integral values ofdt can also be
used in the calculation of the persistence probabilities. Since
experimental measurements are also carried out at discrete
time intervals, the presence of a finite value ofdt has to be
accounted for in the analysis of experimental data also. Note
that the persistence probability itself is mathematically de-
fined, Pst0,t0+ td, for continuous values of timet whereas
measurements and simulations are necessarily done on dis-
crete time.

It has been pointed out in Ref.[54] that discrete-time
sampling of a continuous-time stochastic process does affect
the measured persistence probability. Such effects have been
investigated in detail[40] in the context of a different sto-
chastic probability(called the survival probability in Ref.

[40]) that measures the probability of the interface height at a
fixed position not returning to its time-averaged value within
time t. In that work, it was found that the survival probability
measured for a system of sizeL with sampling intervaldt is
a function of the scaling variablest /Lz anddt /Lz. We expect
a similar behavior for the steady-state persistence probabili-
ties measured in our simulations. Thus, the expected scaling
behavior ofP±

Sst ,L ,dtd is

P±
Sst,L,dtd = f±st/Lz,dt/Lzd, s25d

where the functionf±sx1,x2d should decay asx1
−u±

S

for small
x1 andx2!1.

To test the validity of this scaling ansatz, we have carried
out calculations of the steady-state persistence probability in
the linear F model(the positive and negative persistence
probabilities are the same in this model) using different val-
ues ofL anddt. Due to the linearity of the F model, we have
computed a persistence probabilityPSstd given by the aver-
age value of the positive and negative persistence probabili-
ties. If the scaling description of Eq.(25) is valid, then plots
of PSst ,L ,dtd versust /Lz for different values ofL and dt
should coincide if the value ofdt for the different sample
sizes are chosen such that the ratiodt /Lz remains constant.
As shown in Fig. 16 where we present the data obtained
from simulations of thes1+1d-dimensional F model for three
different values(200, 400, and 800) of L and three corre-

FIG. 14. Persistence probabilities for thes2+1d-dimensional F model of sizeL=2003200, averaged over 200 runs, obtained from
simulations with different values of the initial timet0. (a) t0=20 ML. (b) t0=200 ML. (c) t0=2000 ML. The persistence probability curves
in case(c) show the expected power-law decay characterized by the exponent valuesu+

S=1.02±0.02 andu−
S=1.00±0.02.(d) Log-log plot of

the interface widthW vs deposition timet in units of ML. The slope in the intermediate growth decade isb.0.04 and thereafter it decreases
to zero, as expected.
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spondingly different values ofdt (4, 16, and 64, so thatdt /Lz

with z=2 is held fixed at 10−4), plots of PSstd versust /dt
(which is proportional tot /Lz becausedt is chosen to be
proportional toLz) for the three different sample sizes exhibit
an excellent scaling collapse. These results confirm the va-
lidity of the scaling form of Eq.(25).

As shown in Fig. 16, the scaling functionf exhibits the
expected power-law behavior for relatively small values of

t /dt. Our results also show signatures of a crossover to a
power-law decay with exponent 1 ast approaches and ex-
ceeds the characteristic time scaletsLd (this crossover occurs
neart /Lz.0.1 in the F model). We discuss below a possible
explanation for this behavior.

Height fluctuations at timest0 andt0+ t are expected to be
completely uncorrelated ift is large compared totsLd.
Therefore, the persistence probabilityPSstd for values of t

FIG. 15. Persistence probabilities for thes2+1d-dimensional DT model of sizeL=2003200, averaged over 200 runs, obtained from
simulations with different values of the initial timet0. (a) t0=200 ML: The persistence probabilities do not exhibit clear power-law decay.(b)
t0=4000 ML: The persistence probability curves show the expected power-law decay characterized by the exponent valuesu+

S

=0.77±0.02 andu−
S=0.85±0.02.(c) Results for thes2+1d-dimensional CKD model, obtained usingL=1003100, t0=1000 ML, l=5, and

c=0.13.(d) Log-log plot of the interface widthW vs deposition timet in ML for the DT model. The slope manifests a crossover from an
initial value of ,0.26 to the asymptotic value of 0.20.

FIG. 16. Persistence probabilityPstd for the F model shown for different system sizes with different sampling times. Panel(a),
Double-log plot showing three different persistence curves vs time corresponding to:L=100 anddt=4, L=400 anddt=16, L=800 and
dt=81, respectively. Panel(b), Finite size scaling ofPst ,L ,dtd. Results for persistence probabilities for three different sizes[as in panel(a)]
with the same value ofdt /Lz (i.e., 1 /104) are plotted vst /dt sz=2d. The dotted(dashed) line is a fit of the data to a power law with an
exponent of,0.75 s,1.0d.
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much larger thantsLd may be obtained by considering a
collection of fluctuating variables which have the same prob-
ability distribution (since the system is in the steady state),
and which are completely uncorrelated with one another. Let
x0,x1,x2, . . . represent such a collection of variables[these
variables may be thought of as the height at a particular site
measured at regularly spaced times with spacing larger than
tsLd]. For simplicity, we assume that eachxi is uniformly
distributed between −a anda. Then, given a particular value
of x0, the probabilityP+sx0,nd that all the variablesxi ,1ø i
øn are larger thanx0 may be easily obtained as

P+sx0,nd = F 1

2a
E

x0

a

dxGn

= fsa − x0d/s2adgn. s26d

The positive persistence probabilityP+snd is obtained by av-
eraging this probability over the probability distribution of
x0. Thus, we have

P+snd =
1

2a
E

−a

a

P+sx0,nddx0 =
1

n + 1
, s27d

which decays as a power law with exponent 1 for largen.
This power-law behavior does not depend on the form of the
assumed probability distribution for the fluctuating variables
hxij. Assuming a general probability distributionpsxd with
e−`

` psxddx=1, Eq.(27) can be written as

P+snd =E
−`

`

psx0dFE
x0

`

psxddxGn

dx0

=E
−`

`

psx0dF1 −E
−`

x0

psxddxGn

dx0. s28d

For largen, the quantity that multipliespsx0d in Eq. (28) is of
order unity only for values ofx0 for which e−`

x0 psxddx is of
order 1/n. Physically, this means that the positive persistence
probability is nonzero for largen only if the initial valuex0 is
very close to the lower limit of the allowed range of values.
This effectively restricts the upper limit of the integral over
x0 to y0 wherey0 satisfies the requirement that

E
−`

y0

psxddx= C/n, s29d

whereC is a constant of order unity. Since the quantity that
multiplies psx0d in Eq. (28) is of order unity for such values
of x0, it follows that

P+snd < E
−`

y0

psx0ddx0 ~
1

n
. s30d

This simple analysis shows that the simulation results for the
behavior of the scaling function of Fig. 16 for large values of
t /dt are quite reasonable.

While we have not carried out similar scaling analyses
[Eq. (25)] for other models, we expect the scaling form of
Eq. (25) to be valid in general. We expect that such scaling
analysis of the persistence probability as a function of the
system sizeL and the sampling timedt would be useful in

the analysis of numerical and experimental data in the future.
In fact, we believe that a direct experimental verification of
the scaling ansatz defined by Eq.(25) will be valuable.

V. CONCLUDING REMARKS

In this paper we have investigated the temporal first pas-
sage statistics, expressed in terms of temporal persistence
probabilities, for a variety of atomistic models that provide
discrete realizations of several linear and nonlinear Langevin
equations for the stochastic dynamics of growing and fluctu-
ating interfaces. Using extensive kinetic Monte Carlo simu-
lations, we have obtained transient and steady-state persis-
tence exponents for theses1+1d- and s2+1d-dimensional
SOS and RSOS growth models. We have followed the meth-
odology of Kruget al. [23,24] and extended their numerical
work to the nonlinear MBE dynamical equation by studying
the persistence behavior of the atomistic DT, WV, CKD, and
KPK models. From these studies, we have identified two
persistence exponents for each of the two temporal regimes
(transient and steady-state) of the persistence probability.
The difference between the values of the two exponents re-
flects the nonlinearity(and the resulting lack of up-down
symmetry) of the MBE dynamical equation.

Among the models studied here, we find that ins1+1d
dimensions and in the range of system sizes used in our
simulations, WV and DT models are hardly distinguishable
from the point of view of transient and steady-state persis-
tence behavior: the persistence exponents obtained for these
two models are very close to each other. We, therefore, con-
clude that in the range of simulation parameters used in this
study, thes1+1d-dimensional DT and WV models belong to
the same universality class(namely, the MBE universality
class) as far as their persistence behavior is concerned. A
separate investigation is required in order to understand the
universality class of the WV model ins2+1d-dimensions.
The KPK model appears not to reflect well the nonlinear
feature of the underlying dynamical equation in the values of
the positive and negative persistence exponents. This is prob-
ably due to strong finite size effects arising from the small
lattice sizes used in our traditional steady-state simulations
(i.e., usingt0,Lz). These finite size effects appear to lead to
overestimated persistence exponents[and underestimated
growth exponent, consistent with Eq.(9)].

We have also investigated the CKD model, which is an-
other discrete model belonging to the MBE universality
class, our main goal being a closer examination of how the
nonlinearity of the underlying continuum equation is re-
flected in values of the transient and steady-state persistence
exponents. In this case we have obtained clearly different
values for the positive and negative persistence exponents.
The predictions of the CKD model concerning the persis-
tence exponents have been checked by applying the noise
reduction technique to the DT model. We found that for the
MBE universality class, the steady-state persistence expo-
nents in s1+1d-dimensions are:u+

S=0.66±0.02 andu−
S

=0.78±0.02. These two values represent the average of the
results obtained for the CKD and the noise reduced DT mod-
els. These results suggest that measurements of persistence
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exponents can be profitably used to detect the presence of
nonlinearity in the continuum equations underlying surface
growth and fluctuation phenomena.

The observed difference between the positive and nega-
tive steady-state persistence exponents for the models in the
MBE universality class implies that the relation of Eq.(9),
known to be valid for linear Langevin equations(our results
for the linear F and LC models are in agreement with this
relation), cannot be satisfied by both these exponents. Thus,
it is clear that at least one of these steady-state persistence
exponents is not related to the usual dynamic scaling expo-
nents in a simple way. We have found that the relation of Eq.
(9) is approximately satisfied(within the error bars of our
numerical results) by the smaller one of the two steady-state
persistence exponents in all thes1+1d- and
s2+1d-dimensional discrete stochastic growth models stud-
ied in this paper. We have also shown analytically that this
relation between the smaller persistence exponent and the
growth exponent is, in fact, exact. The smaller exponent ap-
pears to correspond to the positive(negative) persistence
probability if the top(bottom) part of the steady-state inter-
face profile is smoother. This observation suggests a deep
(and potentially important) connection between the surface
morphology and the associated persistence exponent, which
has no simple analog in the dynamic scaling approach where
the critical exponents(a, b, z=a /b) by themselves do not
provide any information about the up-down symmetry break-
ing in the surface morphology. Further investigation of this
aspect would be very interesting and highly desirable, par-
ticularly if experimental information on persistence proper-
ties of nonequilibrium surface growth kinetics becomes
available.

Our investigation of the effects of the initial configuration
on the persistence probabilities indicates that the transient
persistence exponents can be obtained only if the interface is
completely flat at the initial time. This restriction puts severe
limits on the possibility of measuring the transient persis-
tence exponents in real experiments where it would be very
difficult, if not impossible, to meet the requirement of zero
initial roughness. We have also found the surprising and use-
ful result that the steady-state persistence exponents can be
accurately measured even if the initial configuration corre-
sponds to a value oft0 that is much smaller than the time
required for the interface to reach saturation. In other words,

the persistence probabilities exhibit their steady-state behav-
ior for measurement times comparable to the initial timet0
even if the value oft0 is much smaller thanLz. This behavior
was found in boths1+1d and s2+1d dimensions, in all the
linear and nonlinear models we studied. This finding is very
useful because it opens up the possibility of numerically cal-
culating the steady-state persistence exponents for large sys-
tems and for higher dimensions as well. In fact, this obser-
vation enabled us to calculate the steady-state persistence
exponents fors2+1d-dimensional models belonging to the
EW and MBE universality classes. For the MBE universality
class, we have considered the DT model and found the posi-
tive and negative persistence exponents in the steady state to
be <0.76 and<0.85, respectively, ins2+1d dimensions.

We have also examined in detail the dependence of the
measured steady-state persistence probability in the
s1+1d-dimensional F model on the sample sizeL and the
sampling intervaldt which is always finite in simulations and
experimental measurements. We found that this dependence
is described by a simple scaling form. The scaling function
was found to exhibit power-law decay with exponent 1 for
times larger thanLz. We have proposed a simple explanation
for this behavior. We believe that such scaling analysis
would prove to be useful in future numerical and experimen-
tal studies of persistence properties.

We conclude from the results of this study that persistence
probabilities provide a valuable set of tools for investigating
the dynamics of nonequilibrium systems in general, and sur-
face growth and fluctuations, in particular. Recent experi-
mental studies have shown that the concept of persistence
can be applied to analyze the dynamics of fluctuating steps
on Al/Sis111d, Ag(111) and Pb(111) surfaces[32,33] re-
corded using scanning tunnel microscope methods. We be-
lieve that in view of the importance of thermal and shot-
noise fluctuations in the dynamics of growing and fluctuating
interfaces, theoretical and experimental studies of persistence
would play an important role in the analysis of the dynamics
of nonequilibrium surface growth.
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